


# Short Course

# **Aircraft Design**





Deutsche Gesellschaft für Luft- und Raumfahrt Lilienthal Oberth e. V. Godesberger Allee 70 D-53175 Bonn

Short Course

# **Aircraft Design**

Berlin, Germany, 11 – 14 September 2007

Dieter Scholz (Editor) Hannes Ross Erhard Rumpler Dieter Schmitt Jürgen Thorbeck

September 2007

DGLR-Bericht 2007-03 ISBN: 978-3-932182-53-7

# **Course Leader and Editor**

### Prof. Dr.–Ing. Dieter Scholz, MSME

- Professor at Hamburg University of Applied Sciences, Department of Automotive and Aeronautical Engineering. Teaching and research in the area of Aircraft Design, Flight Mechanics, Aircraft Systems.
- Head of the DGLR specialist committee Manned Aircraft.
- <u>http://www.ProfScholz.de</u>

# **Course Instructors and Authors**



Four universities – one short course

### Dipl.-Ing. Hannes Ross

- Lecturer at Technical University Munich and at Bundeswehrakademie in Mannheim.
- Vice President Advanced Design & Technology EADS Military Air Systems (retired).

### Professor Dipl.-Ing. Erhard Rumpler

- Professor at Munich University of Applied Sciences for aircraft design.
- <u>http://www.fh-muenchen.de/fb03/persona/d\_rumpler.pcms</u>

### Prof. Dr.–Ing. Dieter Schmitt

- Professor at Technical University Munich, Institute of Aeronautical Engineering.
- Airbus Vice President "Research & Future Projects" (retired).
- <u>http://www.llt.mw.tum.de</u>

### Prof. Dr.–Ing. Dieter Scholz, MSME

(see above)

### Prof. Dr.–Ing. Jürgen Thorbeck

- Professor at Technical University Berlin, Institute of Aeronautics and Astronautics, Aircraft Design and Aerostructures Group.
- Senior Manager Fleet Development Deutsche Lufthansa (retired).
- <u>http://www.ilr.tu-berlin.de/LB</u>

# **Short Course Management**

Peter Brandt (Generalsekretär, DGLR)

# Support Team

Christian Matalla (HAW Hamburg), Druckerei Thierbach.

### Venue

Estrel Hotel, Berlin

### **Target Delegates**

The DGLR Short Course is arranged for graduated engineers, equivalent professionals and/or managers. It is likewise suitable for specialists in search of a broader perspective as for new-comers to the field.

### Aim

The Short Course gives an insight into the procedures and the multidisciplinary interactions of aircraft conceptual design. The process of iterative synthesis and analysis in aircraft design is illustrated. A software tool for preliminary sizing is demonstrated. Methods and data to enable case studies of subsonic aircraft design are provided.

# Content

The Short Course "Aircraft Design" covers following topics:

- Introduction
- Development Process
- Requirements
- Certification Standards
- Preliminary Sizing
- Fuselage Design
- Wing Design
- Empennage Design
- Landing Gear Design and Integration
- Aircraft Configurations
- Design Evaluation / DOC
- Military Aircraft Development

# **Learning Objectives**

On completion of the Short Course, delegates will

- know aircraft design parameters and methods
- know the fundamental relationship of aircraft design parameters
- be able to size and design an aircraft to the detail as covered during the Short Course
- have a capability to structure aircraft design activities systematically and efficiently.

# **Short Course Schedule**

The Short Course is integrated into the *First CEAS European Air and Space Conference*. The plenary sessions of the congress are included into the short course schedule.

| Monday, 10.09.2007  | Opening Ceremony    |                                       |             |
|---------------------|---------------------|---------------------------------------|-------------|
| Tuesday, 11.09.07   | Short Course, Day 1 |                                       |             |
| 08:30 - 09:30       | Congress            | Space Agencies                        |             |
| 09:40 - 11:00       | Short Course        | Introduction, Development Process     | D. Schmitt  |
| 11:20 - 12:40       | Short Course        | Requirements, Certification Standards | D. Schmitt  |
| 14:00 - 15:00       | Congress            | A380                                  |             |
| 15:10 - 16:30       | Short Course        | Preliminary Sizing                    | D. Scholz   |
| 16:50 - 18:10       | Short Course        | Preliminary Sizing                    | D. Scholz   |
| Wednesday, 12.09.07 | Short Course, Day 2 |                                       |             |
| 08:30 - 09:30       | Congress            | ATM                                   |             |
| 09:40 - 11:00       | Short Course        | Fuselage Design                       | E. Rumpler  |
| 11:20 - 12:40       | Short Course        | Wing Design                           | D. Scholz   |
| 14:00 - 15:00       | Congress            | Bologna Process                       |             |
| 15:10 - 16:30       | Short Course        | Landing Gear Design                   | E. Rumpler  |
| 16:50 - 18:10       | Short Course        | Empenage Design                       | D. Scholz   |
| Thursday, 13.09.07  | Short Course, Day 3 |                                       |             |
| 08:30 - 09:30       | Congress            | Technology                            |             |
| 09:40 - 11:00       | Short Course        | Aircraft Configuration                | E. Rumpler  |
| 11:20 - 12:40       | Short Course        | Aircraft Configuration                | E. Rumpler  |
| 14:00 - 15:00       | Congress            | Aeronautics                           |             |
| 15:10 - 16:30       | Short Course        | Aircraft Assessment                   | J. Thorbeck |
| 16:50 - 18:10       | Short Course        | Aircraft Assessment                   | J. Thorbeck |
| Friday, 14.09.07    | Short Course, Day 4 |                                       |             |
| 08:30 - 09:50       |                     | Military Aircraft Development         | H. Ross     |
| 10:10 - 11:20       |                     | Military Aircraft Development         | H. Ross     |
| 12:20 - 13:40       |                     | Military Aircraft Development         | H. Ross     |
| 14:00 - 15:20       |                     | Military Aircraft Development         | H. Ross     |
|                     |                     |                                       |             |

# **Authors and Lecture Notes**

D. Schmitt:

Lecture Notes: "Introduction, Aircraft Development, Certifications, Configurations"

D. Scholz: Lecture Notes: "Preliminary Sizing"

*E. Rumpler:* Lecture Notes: "Fuselage Design"

D. Scholz: Lecture Notes: "Wing Design"

*E. Rumpler:* Lecture Notes: "Landing Gear Design"

D. Scholz: Lecture Notes: "Empenage Design"

*E. Rumpler:* Lecture Notes: "Engine Integration"

*E. Rumpler:* Lecture Notes: "Aircraft Configuration Design"

J. Thorbeck: Lecture Notes: "From Aircraft Performance to Aircraft Assessment"

*H. Ross:* Lecture Notes: "Military Aircraft Development"

The total notes of this short course consist of more than 390 pages.

# **Table of Contents**

### 1 Introduction

- 1.1 Air Transport System
- 1.2 Air Vehicle Classification

### 2 Aircraft Development

- 2.1 Aircraft Development Cycle
- 2.2 Market Requirements
- 2.3 Design Problematic in Engineering
- 2.4 Design Methodology

### 3 Certification

### 4 Configurations

- 4.1 Actual Configurations
- 4.2 Unconventional Configurations

### 5 Preliminary Sizing

- 5.1 Landing Distance
- 5.2 Take-off Distance
- 5.3 Climb Rate during 2<sup>nd</sup> Segment
- 5.4 Lift-to-Drag Ratio with Extended Landing Gear and Extended Flaps
- 5.5 Climb Rate during Missed Approach
- 5.6 Cruise
- 5.6.1 Thrust-to-Weight Ratio
- 5.6.2 Wing Loading
- 5.7 Lift-to-Drag Ratio during Cruise
- 5.8 Matching Chart
- 5.9 Maximum Take-Off Mass
- 5.9.1 Operating Empty Mass and Useful Load
- 5.9.2 Fuel Fractions
- 5.10 Take-off Thrust and Wing Area

### 6 Fuselage Design

- · design methodology
- cabin layout
- · airworthiness
- · design loads
- structural technology
- · cutouts
- passenger doors
- · inboard profile

### 7 Wing Design

- 7.1 Wing Parameters
- 7.2 Basic Principle and Design Equations
- 7.3 Flight and Operational Characteristics
- 7.4 Ailerons and Spoilers
- 7.5 Example: The Wing of the Airbus A310

### 8 Landing Gear Design

- · gear arrangement
- · airworthiness
- · design loads
- energy dissipation
- · retract kinematics
- · brakes, wheels
- · gear configurations

### 9 Empennage General Design

9.1 Functions of Empennages Trim Stability

Control

- 9.2 Shapes of the Empennage
- 9.3 Design Rules
- 9.4 Design According to Tail Volume
- 9.5 Elevator and Rudder

### **10** Engine Integration

- standard turbofan engines
- engine attachment points
- engine pylon
- · load transfer
- ground clearance
- turboprop engines
- · innovative concepts

### 11 Aircraft Configuration Design

### Chapter 1

- · design methodology
- structural components integration
- · CG travel
- · zero-lift drag
- · airworthiness
- · design loads
- structural concept

### Chapter 2

- $\cdot$  configuration problem : 160 200 PAX medium transport
- · configuration problem : 30 PAX regional transport

### Chapter 3

- special configurations
- · conclusion
- 12 From Aircraft Performance to Aircraft Assessment
- 12.1 Objectives of the Lecture
- 12.2 Preface for a Simple Approach to DOC
- 12.3 Operational Cost Structure
- 12.4 A simplified DOC Model
  - a. DOC Notations
    - b. Fuel Demand
    - c. Average Aircraft Weight
    - d. Payload Range Diagram
    - e. Unit Cost
    - f. JAVA DOC Applet
- 12.5 Aircraft Family Economics
- 12.6 Presentation of DOC Calculation Results
- 12.7 Total Quality Assessment

### 13 Military Aircraft Development

- 13.1 Development Scenario/Environment
- 13.2 Requirements
- 13.3 Development Process and Tools
- 13.4 Technologies
- 13.4.1 Composites
- 13.4.2 Ejection Systems and Pilot "g" Protection
- 13.4.3 Unstable Configurations and Digital Flight Controls
- 13.4.4 Thrust Vectoring
- 13.4.4.1 X-31 Enhanced Fighter Manoeuvrability (EFM) Program
- 13.4.4.2 The VECTOR Program
- 13.4.5
- 13.5 Unmanned Systems
- 13.6 Future Aspects
- 14 **References** (from Chapters 5, 7 and 9)

Aircraft Signature